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A note on Hamilton’s principle for perfect fluids 
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Department of Earth and Planetary Sciences, The Johns Hopkins University 

(Received 24 September 1969 and in revised form 12 May 1970) 

A derivation is given of the Eulerian equations of motion directly from the 
Lagrangian formulation of Hamilton’s principle. The circulation round a circuit 
of material particles of uniform entropy appears as a constant of the motion 
associated with the indistinguishability of fluid elements with equal density, 
entropy and velocity. A discussion is given of the Lin constraint, and it is pointed 
out that, for a barotropic fluid, the variational principle recently suggested by 
Seliger & Whitham does not permit velocity fields in which the vortex lines are 
knotted. 

1. Introduction 
The equations of motion for the adiabatic flow of an inviscid compressible 

fluid subject to conservative body forces may be obtained from Hamilton’s 
principle in several ways (Herivel 1955; Lin 1963; Serrin 1959; Eckart 1960; 
Penfield 1966; Seliger & Whitham 1968). The most direct approach yields a 
Lagrangian formulation of the equations of motion, and, although Eckart 
(1960) has shown how it provides an elegant treatment of the fundamental 
theorems of fluid dynamics, it has not been used to any great extent for further 
developments, largely because the Lagrangian specification of the flow is unneces- 
sary and inappropriate for many problems. Herivel and Ein proposed a different 
form of the variational principle, in which no direct mention is made of the posi- 
tions of individual material particles. This gives the instantaneous velocity field 
in terms of gradients of potentials, but, although it contains complete informa- 
tion about the dynamics of the system, it too is not always very convenient in 
applications, because the physical significance of the potentials themselves is not 
very clear, and there are substantial indeterminacies and redundancies in their 
definition. 

The primary purpose of this note is to propose a hybrid approach, whereby the 
Eulerian form of the equations of motion is obtained directly without the intro- 
duction of potentials. It permits a new derivation of Kelvin’s circulation theorem, 
which is seen to describe the constants of the motion associated with the indis- 
tinguishability of different fluid particles with the same velocity, density and 
entropy. Some discussion is also given of the precise relationship of the Herivel- 
Lin formulation to Hamilton’s principle, in particular of the significance of the 
Lin constraint. None of the final results are new, but it is hoped that the treatment 
helps clarify some of the fundamentals of fluid dynamics. It arose in the course of 
investigations into the general properties of wave propagation, and its application 
there will be reported elsewhere. 

2-2 
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2. Orientation 
In  this section we recapitulate briefly the essentials of the two main earlier 

approaches. These have been presented many times before (e.g. Serrin 1959), but 
back references to many of the equations will be required later. 

In  the usual formulation of Lagrange's equations for a mechanical system, the 
position of every massive particle is determined by the geometry when certain 
generalized co-ordinates are known (although this geometrical specification may 
depend explicitly on time). For an unbounded fluid, the simplest set of general- 
ized co-ordinates (a triply infinite continuum) is provided by the functions x(ii), 
where x is the position vector of a particle labelled by its initial position 2. The 
geometrical specification is thus almost trivial. As the motion proceeds, the 
values of the generalized co-ordinates change, and attention is concentrated on 
the trajectories x = X(f,t) .  

At each time t ,  the functions (1) induce a mapping (assumed one-one), of which 
the inverse is it = Z(x, t ) .  

The density p(x, t )  is related to the initial density 
trajectory by the Jacobian of the mapping, 

along the appropriate 

and, if the entropy s of a fluid particle is constant, 

s = iqii). (4) 

If the internal energy per unit mass is E(p, s), and the potential energy is @(x), 
the action integral for an unbounded fluid is 

where 

The integration is over all the mass in the system (identified by the initial 
densityp and the initial element of volume dv"), and then over all time, all variables 
being considered as functions of it (the label on each generalized co-ordinate) 
and t. 

We now consider suitably differentiable infinitesimal variations in the particle 
trajectories, which vanish for t outside some limited range [tl, t 2 ] ,  and for f outside 
some finite domain P. The restriction at  t = & 00 is an essential part of Hamilton's 
principle. These variations induce changes A p  in the mass per unit volume 
associated with a given particle (or label ii). The latter may conveniently be 
expressed in the hybrid Eulerian-Lagrangian form, 

1 
-Ap = - V .  ( A X ) ,  
P 
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where V is the gradient operator (alax,, a/ax2, alax,) with respect to current posi- 
tion x, and, for the purpose of differentiation, AX is expressed by means of (2) 
as a function of x, t .  According to (4), 

As = 0. (7 )  

Substituting into the action integral ( 5 ) ,  integrating by parts and setting 6A = 0 
for all permissible AX, we obtain after some manipulation the Lagrangian 
equations of motion, 

a2x 

a t 2  
p--+pV@+Vp = 0, 

where 
aE 

P = P.(ap) . (9) 

In  an Eulerian representation, on the other hand, the system is described by 
the velocity u(x, t )  at a fixed point, regardless of which fluid particle is actually 
there. It was shown by Herivel (1955) and Lin (1963) that the equations of 
motion may be derived from the variational principle, 

(10) 

where u, p, s are regarded as functions of the current Cartesian co-ordinates x and 

a a  _ -  at = at + u .v. 

The permitted variations in U, p, s, a,  p, yi, hi (i = 1 , 2 , 3 )  are independent, 
continuously differentiable and vanish for 1x1 or It1 sufficiently large. The 
Lagrangian multipliers a, ,4 ensure conservation of mass and entropy, respectively 

The term 

as 
at at 
%+V.(pu) = 0,  - = 0. 

was introduced by Lin. If it is omitted, the variational principle permits only 
a restricted class of velocity fields u. Making variations 6u, we see that 

u = V a  - p v s  - yiVh,, 
i 

so that u is described by the 8 potentials a, p, y i ,  hi. Without the last term, so 
that only a and ,8 are included, it is easy to see that, for any closed circuit r lying 
in a surface of constant entropy, the circulation rf u . dl vanishes identically, and 
the velocity field u is not completely general. However, with the Lin constraint 
there are 6 additional potentials, which provide a more than adequate number 
of degrees of freedom (cf. Seliger & Whitham 1968). Because a number of mis- 
statements about it have appeared in the literature, the physical significance of 
the Lin constraint is discussed in 3 5 .  
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Meanwhile, i t  should be noticed that the connexion between the variational 
principle (10) and Hamilton’s principle is not entirely obvious. The state of the 
system is determined by the variables u, p, s, etc., which do not specify the 
position of any individual material particle. Indeed, for a given velocity field, 
particle trajectories may only be obtained by an additional integration, of 

ax 
dt 
- = u(X,t), 

so that the connexion between the geometrical configuration and the instan- 
taneous values of the generalized co-ordinates is not unique. Besides equations 
(11) and (12), the Euler-Lagrange equations for the principle determine the time 
derivatives of the potentials, i.e. 

and some elimination is required before the conventional momentum equation is 
recovered, The specification (12) of the velocity field in terms of potentials is 
cumbersome, and for some applications is distinctly inconvenient. Although the 
number of potentials necessary may be reduced from 8 to  4 (see 8 6),  for a given 
u(x), p(x), s(x) considerable arbitrariness remains in their definitions, and their 
physical significance is obscure. I n  particular, even in a state of equilibrium a t  
rest, 01 and p decrease monotonically with time, and the hi and yi could be a,ny 
functions of position for which 

~ V y , x V h i + v p x V s  = 0. 
i 

3. Derivation of the Eulerian form of the momentum equation 
I n  the Lagrangian formulation ((1)-(9)), all variables were functions of the 

initial co-ordinates t and time. However, for agiven set of particle trajectories (I) ,  
they can be expressed via the inverse mapping (2) as functions of the current 
co-ordinates x, t .  The element of mass pdG becomes identically p d v  and the 
action integral (5) is 

(19) 

However, we must now distinguish between variations A incurred on a given 
label or particle f and variations S a t  a point fixed in space. If infinitesimal 
changes AX(%, t )  are made in the trajectories, corresponding variations 

A = j- (8 I u 12 - E(p,  8) - @(x)} p dv at. 

SX(x)=- AX.- X ( 2 
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are implied in the inverse mapping, and, for any quantity $, 

a i i  a$ 
ax . aii: 

= A$-AX.-  - 

= A$-AX.V$.  

23 

FIGURE P. A particle trajectory in space-time APB, and a variant of it AP’B. 

The essential point is indicated schematically in figure 1. APB represents the 
actual trajectory of a fluid particle and AP‘B a (virtual) variant of it. As required 
by Hamilton’s principle, the two coincide for time t greater than some value t ,  
or less than t,. Then 

A$ = $‘W - $(P), 

whereas w = $’(P) - 

= $’(P’) - $(P) - {$’(P’) - $’m} - A $ - P F . v $ ’  

N A$-AX.V$.  

As particular cases we have 

sp = -pV . (AX) - A X  .Vp, 
ss = 0 -AX.Vs, 

d 
6~ = -(AX) dt - A X . V u .  (24) 

Equations (22)-( 24) express conservation of mass, constancy of entropy following 
a fluid particle, and the definition of u as the slope in space-time of the particle 
trajectory, relating variations to the displacements AX only. For the purpose of 
calculation A X  itself as well as the other variables may be regarded as a function 
of x, t. The important thing is that it should exist and should vanish €or all 
sufficiently large 1x1 or It\. 
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Substituting variations (22)-(24) into the action integral (19), 

-pV@ . AX - AX. V{+p Iu 12-pE -p@) dv dt 1 

J 

= -1 [: (pu) + V .  (puu) +pV@ +Vp . A X d v d t ,  1 
wherep is defined by (9). This is true for arbitrary variations AX which vanish at  
infinity, so Hamilton’s principle asserts that 

a 
- at (pu) -F v . (pum) +pV@ + vp = 0. (26) 

The Eulerian momentum equation is thus obtained as the variational derivative 
of the total action with respect to localized particle displacements. 

We observe also that if in the identities (22)-(24) we let AX = u &, where 6t is 
an infinitesimal constant, the time development of the system is delayed by an 
amount 6t. We obtain expressions for the time derivatives at  a point, associated 
with the actual motion: 

(27) aP - = -p(V.u)-u.vp, 
at 

and 

_ -  - - as 
at u . vs, (28) 

au a 
at at 
- = -u - (u . V )  u. (29) 

In this formulation these appear as identities, built explicitly into the geometrical 
specification of the system by (3) and (13). As Herivel showed, conditions (3) and 
(4) could be adjoined to the basic variational principle by Lagrange multipliers, 
but this introduces additional variables and the directness of the derivation is lost. 

4. Kelvin’s circulation theorem 
In a homogeneous fluid, elements with the same velocity, density and entropy 

are indistinguishable, and they may be interchanged without affecting the 
physically interesting properties of the system at all. It is because of this indis- 
tinguishability that the Eulerian representation in terms of u, p and s is more 
useful than the Lagrangian one in terms of particle positions. The latter carries 
redundant information which is not normally significant in the dynamics of the 
flow (though it is important for a correct application of Hamilton’s principle). 
Associated with the invariance of the action integral (19) under a reshuffling of 
particles which leaves the fields U(X, t ) ,  p(x, t )  and s(x, t )  unaltered, we must 
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expect some fundamental constants of the motion. As we will now see, they are 
just those implied by Kelvin's circulation theorem. 

Consider an instantaneous displacement AX,(x) under which the material 
particles in a closed solenoidal filament of infinitesimal cross-section S and centre- 
line rl are substituted for one another cyclically (figure 2), the mass Am passing 
each cross-section of the filament being the same. Particles outside the filament 

S 

FIGURE 2. A substitution displacement of fluid particles around a filament centred on the 
circuit rl. As the particle at  P is displaced to P', its density is adjusted to  that of the particle 
previously at P'. 

a,re left undisturbed. This change could be envisaged as due to localized body 
forces acting during an infinitesimal interval about time t = t,. The displacement 
AX, must be parallel to the local unit tangent vector t of the filament, and 

Am = pS ]AX,] = constant. ( 30) 

This condition ensures that the density distribution p after the displacement is 
the same ils before (Sp = 0). We suppose also that I?, lies in a surface of constants, 
so that the local change 6s required by (23) vanishes. An instantaneous displace- 
ment at time t, implies a particle velocity which is a Dirac delta function of time: 

6~ = AXl(x)6(t-t1); (31) 

and the associated variation in the total action is 

= [ p u  . AX, dv 

Here 

= A m $  u . d l .  
rl 

dl = t dl 

is the line element along the filament I?,, so that the element of volume of the 
solenoid is dv = Sdl. Previous and subsequent to the infinitesimal interval 
around t = t,, we suppose that the velocity field U(X, t )  is unaltered, so that the 



26 F .  P .  Bretherton 

time development of all the fields according to the identities (27)-(29) is un- 
affected by the variation and, except for the contribution (32) already calculated, 
the variation in the total action vanishes. 

However, in one important respect, this particle substitution does not meet 
the requirements of a variation under Hamilton's principle. Although the true 
velocity field U(X, t )  and its variant u'(x, t )  coincide for all times except close to 

(33) 
t = t,, so that 

the same is not true of the trajectories. A particle displaced at time t ,  to a neigh- 
bouring point in physical space will remain on the trajectory defined by (13) 
through that point. The displacement AX(x, t )  changes for t > t, like the infini- 
tesimal line element separating two material fluid particles, and does not vanish 

6u(x, 00) = 6u(x, - 00) = 0, 

FIGURE 3 .  Particle trajectories APQB, CP'Q'D for a velocity field u(x,t), and a variant 
trajectory APP'Q'QB subject to substitution displacements at t, and t , .  

as t -+ + 00. To restore it to zero a second substitution displacement is necessary 
at some time t,, defined by a mass exchange around the solenoid rz consisting of 
the same material particles which were involved in r1, of magnitude equal to 
Am but in the opposite sense. The change in the total action under this second 
substitution displacement is 

c 

Then, for times t > t,, the variant trajectories coincide in all respects with the 
originals, and Hamilton's principle applies. It states that 

SA,+&A, = 0, 

i.e. (jFIU.dl = (j rz u.dl. (35) 

Clearly $he same is true at  any times t,, t,, for any closed material filament con- 
sisting of particles all with the same entropy. We thus have precisely Kelvin's 
circulation theorem. 
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The instantaneous localized displacements just considered are not, of course, 
continuous and are not strictly permitted under the rules for variational 
principles. However, we may approximate them by infinitely differentiable 
functions as closely as we please. The density and entropy distributions will be 
unaltered by an instantaneous displacement field AX(x) if 

V .  (PAX) = 0, (36) 

AX.Vs = 0. (37) 

(38) 

Locally, at  least, the most general such field may be written 

PAX = a(s,q5) VS x Vq5, 

where q5 is an arbitrary function of position, and a(s, Q) is also arbitrary. For (38) 
certainly implies (36) and (37). Conversely, consider the curves F with tangents 
everywhere parallel to a given AX(x). By (37) these certainly lie in the surface 
s = constant. Also, let #(x) be any other smooth function which is also constant 
along each I?. Then AX is everywhere parallel to the intersection of the surfaces 
s = constant and Q = constant, i.e. 

PAX = E(X) VS x Vq5 

V a .  (Vs x VQ) = 0, 

(39) 

(40) 
i.e. a is constant along each F, and may be written as a function of s and q5 only. 
Now the infinitesimal cross-sectional area St of the filament contained between 
the neighbouring surfaces 4 and #, s and s‘, is given by 

for some a. Now (36) shows that 

so the mass displaced along it is simply 

pAX.tS = a(~,Q)(s’-~)(q5’--$). (42) 

A sequence of such continuous functions a(s,  4) may be used to define a Dirac 
delta function of given strength Am, centred on a given circuit I” defined by s’, q5’ 

CL(S,+) = Am6(s-~’,#-Q’). (43) 

This is the displacement AX, considered above (with the s’, Q‘ replacing s, 4). 
Between times t ,  and t,, s‘ and q5‘ are Lagrangian variables, which are constant 
following fluid particles. At time t ,  the displacement defined by (43) is repeated, 
but with a minus sign in front of Am. 

However, this analytical characterization of the displacements described in 
figure 2 suffers from a substantial defect. Although a representation of the 
form (39) can always be found locally, it is not obvious that Q will be single valued 
over the whole three-dimensional Euclidean space. Whether this is so for a given 
displacement field AX apparently depends on the topology of the whole set of 
tangent curves r. For example, if these have a shape similar to the strands in 
a rope spliced to form a continuous loop, Q clearly must be singular somewhere,. 
This point deserves further investigation. 
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5. The Lin constraint 
The present approach helps clarify the significance of the Lin constraint. The 

effect of the latter is not (as stated by Seliger & Whitham 1968) to ensure that 
the particle trajectories X(2, t)exist, because (13) has solutions for any continuous 
u(x, t ) ,  and these may always be identified by the initial co-ordinates t. Neither 
does it primarily require that the intersection of such trajectories with the 
physical boundaries of the fluid should remain fixed. 

Rather, as apparently realized by Lin himself and Eckart (1960)) the introduc- 
tion of the functions hi serves to ensure that no variation AX in the trajectories 
persists as t --f co. It is worth considering in a little more detail the precise relation- 
ship of the variational principle (10) to Hamilton’s principle, and how the restric- 
tion of the trajectories is actually achieved. 

The variational principle is expressed in terms of the variable functions u, p, s, 
a, p, y i ,  hi, which serve as generalized co-ordinates. No mention is made of how 
the positions of the massive particles in the system are related to the generalized 
co-ordinates, so the connexion with the elementary formulations of a Lagrangian 
and of Hamilton’s principle is not immediately obvious. Although, for given 
u(x, t ) ,  the solution curves x = X(2, t )  of (13) may be uniquely labelled by the 
co-ordinates ii; corresponding to t = 0, these labels are not necessarily attached 
to particular material particles. However, variation of a, p and yi in (10) implies 
(11) and (16) for the conservation of mass, and that the entropy s and the hi 
(i = 1 , 2 , 3 )  are constants along these solution curves. These equations could, in 
principle, be integrated to yield (3) and (4), and a material particle could thus 
consistently be associated with each label 8. Something approaching the required 
geometrical connexion is then implicit, and the integral in (10) reduces to the 
total action (19). 

However, statements (1 1) and (16) are inferences from the variational principle, 
and must be treated with caution if they are to be used to modify the formulation 
of the principle itself. Nevertheless, such use is permitted if subsequent variations 
in the remaining variables are restricted in such a way as never to violate the 
assumed statements. Although they are not all independent, it is unnecessary to 
eliminate explicitly between them. The variational principle thus obtained from 
(10) by ignoring terms in a, p and yi, but making the most general variations 
6u, Sp, 6s, Shi consistent with (11) and (16), is then equivalent to (10) itself with 
the fields a, p, yi eliminated after all variations have been made. 

An explicit statement of the restrictions on 6u, Sp and 6s has already been 
given, namely (22)-(24). To see this, consider the trajectory X(2, t )  defined by (13) 
for a field u(x, t ) ,  and the corresponding X’(t, t )  for a variant u’(x, t). For all 
f < t ,  

6u = u’-u = 0) 

and we may choose 
AX = X’(t, t )  - X(t ,  t )  = O (44) 

there, thus eliminating ambiguity in the original attachment of labels to material 
particles. Subsequently, AX is the unique solution of (24) determined along the 
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characteristic trajectories X($ t ) ,  and a general Su implies a corresponding AX, 
and conversely. It may be verified that Sp given by (22) is then the solution of 

a 
-(6p)+V.(Spu)+V.(pSu) at = 0 

which corresponds to Sp = 0 when t < t,. Similarly for (23). We must also adjoin 

6A.i = - AX. VAi. (45) 

Thus, the variational principle (10) is indeed very close to the version of 
Hamilton’s principle described in $3. However, there is one important difference 
which must be clearly recognized. 

As has already been emphasized, the condition Su = 0 for It1 sufficiently large, 
is not sufficient to ensure that the variations AX inferred from equation (24) also 
vanish there, although the converse is of course true. The geometrical specifica- 
tion implied by (10) depends on the whole past history of the field u(x, t ) ,  not on 
its instantaneous value. The restrictions 

6u = Sp = 6s = 0 ( t  > t,), 

which are built into the statement of the variational principle (lo), do not of 
themselves tie down the ends of the particle trajectories in the manner required 
by Hamilton’s principle. The degree of freedom remaining corresponds precisely 
to an arbitrary substitution displacement as defined in 3 4, and the vanishing of 
the corresponding variation in the total action implies that 

(46) = 0 

for every closed circuit rZ lying in a surface of constant entropy. This limitation 
on the velocity fields u is just that inherent in Herivel’s original formulation of 
the variational principle. 

This difficulty is overcome by the inclusion of the terms y,(dhi/dt) .  Variation of 
the Lagrange multipliers yi implies that the Ai are consistent along the particle 
trajectories, and the A, could be chosen as the original Cartesian co-ordinates 2; 
(i = 1,2 ,3)  of the trajectory. However, any set of differentiable functions, for 
which a(h,, A,, A3)/a(z1, x,, x3) + 0 or 00 anywhere, would do as well. Since the hi 
are constants of the motion, the mapping h-x remains non-singular for all 
time if it was so originally. The crucial part of the Lin constraint is the assumption 
for (10) that 

Sh, = 0, t < t ,  and t > t,. (47) 

This completely removes the indeterminacy in AX, because according to equa- 
tions (45), (47), AX is now perpendicular to three non-coplanar vectors Vh,  
(i = 1,2 ,3) .  

Thus, if variations in (10) are accomplished in two stages (first the Lagrange 
multipliers a, p, yi to establish the geometrical framework, and then the 
remaining variables u, p, s, hi subject to the geometrical constraints), the corre- 
spondence with Hamilton’s principle is exact. It should be noted that, once they 
have been varied, all reference to a, p, y, is suppressed. Any inferences about 
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them would involve variations Su, etc., which violate the geometrical corre- 
spondence. Thus, from this viewpoint, the existence of a representation of the 
velocity of the form (12) for some single-valued functions a, p ,  yi satisfying 
(14), (15) and (17) must be inferred from the equations of motion, rather than 
conversely. 

6. Reduction in the number of potentials 
According to Seliger & Whitham (1968), we may use the variational principle 

(10) with only one Lin variable h and its Lagrange multiplier y ,  without im- 
pairing the generality of the states of the physical system which are described. 
This reduces the number of potentials from 8 (a, p ,  yi, hi) to 4 (a, p ,  y ,  A), and is 
a real economy. However, their remark requires qualification. 

Consider first a barotropic fluid, in which Vs  vanishes everywhere. We have 
then the velocity field described by Clebsch co-ordinates, 

u = V a - y V h .  (48) 

Now, any vector field u may be described locally in terms of three functions of 
position in this way, but, if a, y and A are $0 be single-valued, there are some 
integral constraints on u, which may seriously reduce the value of the representa- 
tion.? Thus, the vorticity is given by 

1; = v x u = -vy x Vh,  (49) 

and, for any volume I/' bounded by the simple closed surface X, 

IV<.udv = - {Va.VyxVh)dv s, 
= -s,v .{aVy x Vh}dv 

= S, a<. az. 

If Z is chosen such that 1;.dZ = 0 everywhere on it, i.e. if V is made up of the 
superposition of a number of closed vortex filaments, we must have 

1;.udv = 0. J, 
For a general velocity field u, . u dv is a measure of the knottedness of the 

vortex lines (Moffatt 1969), and does not in general vanish. Indeed, if the 
volume T' moves with the fluid particles contained in it, this integral is a constant 
of the motion. For an individual closed solenoidal vortex filament of infinitesimal 
local cross-sectional area S, the strength 

I V 6  

c= 151s ( 5 2 )  

-f. The author is grateful to Dr H. K. Moffatt for pointing this out. 



Hamilton’s principle for perfect jluids 

is a constant around the filament and with time. But 

= c u.dl,  $ 

31 

(53) 

which is constant by Kelvin’s circulation theorem. Clearly, the same is true for 
the superposition of any number of vortex filaments. 

Thus, if the initial conditions are such that the vortex lines are knotted, the 
potentials in the Clebsch representation are essentially multiple valued, aiid 
must have singularities somewhere. Thus, any conclusions drawn from the 
variational principle concerning integrals over finite regions of the velocity field 
must be regarded with reserve, until the adequacy of the representation has 
been demonstrated. The equations of motion themselves require only local 
validity in a neighbourhood of the point under consideration, and are unaffected. 

When Vs + 0, however, an addit.iona1 degree of freedom is available, corre- 
sponding to the potential p. Although the author has been unable to prove it, it 
appears likely that single-valued functions can be found for any velocity field u, 
and the reduction to 4 potentials is free from objection. The relation of the 
corresponding variational principle to Hamilton’s principle remains obscure. 

The author is indebted to Dr W. L. Siegmann for reading the manuscript, and 
for invaluable discussions of its contents. This research was supported by the 
National Science Foundation, Grant GA 16603. 
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